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Abstract: A systemic framework is presented for organizing knowledge about drought forecasting. It 
includes these topics: couplings among a descriptive drought model, monitoring system, and forecasting 
system; propagation of uncertainties; types of forecasts and attributes of performance such as the lead time 
and skill; sufficient measures of skill and economic value of forecasts; theoretical and operational limits of 
predictability; and the interface between forecasts and drought management decisions. Reviews of opera- 
tional forecasts of the seasonal snowmelt runoff volumes and forecasts of the seasonal cyclone frequencies, 
temperature, and precipitation in the United States illustrate the methodological topics, outline the present 
limits of drought predictability, and suggest promising research paths. Among them are modeling of fore- 
cast uncertainties and their propagation from states of atmospheric circulation to states of a hydrologic 
regime, and exploring novel forms of the hydro-meteorologic coupling that would extend the lead time 
and/or increase the skill of long-range drought forecasts. 
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1 Introduction 

The objective set before us is to chart directions for research in the sciences of drought 
description, monitoring, and forecasting. The guiding objective of this paper is twofold. 
Firstly, I have attempted to formulate a systemic framework for organizing knowledge 
about drought forecasting. This framework is somewhat abstract. But it seemed vital to 
maintain the rigor of definitions and the generality of concepts so that they may, indeed, 
play the intended role - that of an organizing framework for thoughts of scholars of 
many disciplines. 

Secondly, I have attempted to review two operational forecast systems which pro- 
duce: 

�9 forecasts of the seasonal snowmelt runoff volumes in the western United States, and 

�9 forecasts of the seasonal cyclone frequencies, temperature, and precipitation in the 
eastern United States. 

The aim of these reviews is to illustrate components of the systemic framework for 
knowledge organization, to offer a partial assessment of the drought forecasting capabili- 
ties in the 1980s, and to provide a springboard for discussing various research topics, par- 
ticularly at the interface of hydrology and meteorology. I wish to stress that these reviews 
are more partial than comprehensive, and the few statistics reported are more illustrative 
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than sufficient. The many complexities of drought forecasting will, no doubt, receive 
brighter illumination as research progresses. 

2 A system framework 
2.1 Definition of  a drought 

A drought, unlike a flood, has no universal definition. To arrive at one, let us define four 
elements: 

space areas - river basin, region, country, hemisphere; 

time periods - month, season, year; 

meteorologic variables - mean temperature and precipitation amount during a time 
period at a point in space; 

hydrologic variables - runoff volume, mean groundwater level, and mean soil mois- 
ture during a time period at a point in space. 

Other variables could be included as well. As a function of the space coordinates and 
time, each variable defines a stochastic field. The joint realization over time of the 
meteorologic fields defines the climate for an area. 

A spatial average, or some other statistic of the field, summarizes its state for a given 
time period. An example of a state is the average areal precipitation amount accumulated 
over a river basin during six months from 1 January. Let s =( t ,p ,r ,g ,m ) denote a vector of 
states for  the fields defined above: t - temperature, p - precipitation, r - runoff, g - 
groundwater, m - moisture. A drought is said to occur in a given area and period when 
an observation of the state vector s falls within a critical subdomain S D. Different defini- 

tions of a drought are obtained by simply redefining St). Some scholars speak of a 

meteorological drought whenever (t,p) ~ SM, a hydrologic drought whenever (r,g) ~ SH, 

and an agricultural drought whenever (p,m) ~ S A. Regardless of how one defines the crit- 

ical subdomain S D, S M, S H, or S A, to forecast a drought one must forecast the state vector 

s. We shall assume, therefore, that the two forecasts are synonymous. 

2.2 Meteorologic, hydrologic, and impact forecasts 

A forecast of meteorologic states provides an input into a forecast of hydrologic states 
(Figure 1). Both forecasts serve as inputs into forecasting drought impacts; one of them is 
the quality of the surface and groundwater. Because of the cascade coupling, uncertain- 
ties propagate from the meteorologic forecast to the forecast of water quantity and then to 
the forecast of water quality. 

2.3 Drought forecasting system 

The scientific knowledge and historical data provide a basis for developing descriptive 
models of droughts. In a broad sense, a descriptive model outputs a prior distribution of 
the state vector s. Under the assumption that the climate is stationary from year to year, 
the prior distribution provides a drought forecast for every year in an infinite series. Since 
this forecast is identical for every year, we shall call it a naive forecast. It contrasts with a 
perfect forecast that would specify the actual observation of s for every future year. 

The essence of skillful forecasting is the aggregation of the prior distribution with 
present observations of various hydrometeorologic variables collected by the monitoring 
system (Figure 2 ). Through a likelihood function, the observations convey any predictive 
information they contain about the realization of the state vector s in the immediate 
future. The output from the forecast system is the posterior distribution of the state vec- 
tor s. The skill of the forecast is demonstrated when the posterior distribution for a given 
period differs from the prior distribution. More on this later. 
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Behind the scheme in Figure 2, the reader may recognize Bayesian principles. While 
not every forecasting system is explicitly Bayesian, this scheme offers us a general 
framework for discussing, evaluating, and comparing various forecast systems. 

2.4 Climate change and drought forecasts 

The possibility of a climate change is so vigorously studied that we feel compelled to 
address the topic. Within our Bayesian framework, a change in climate is synonymous 
with a nonstationarity of the prior distribution. A forecast of the climate change should 
be expressed in terms of a sequence of distributions of s for some years into the future. A 
drought forecaster could then use the distribution for the next year as his prior distribu- 
tion. Practically, this coupling between the climate change forecasting and drought fore- 
casting may be unnecessary; prior distributions estimated from climatological records 
should suffice. The reason is that within the potential lead time of drought forecasts, 
which is on the order of a few months or years at most, the nonstationarity of the prior 
distribution appears insignificant vis-a-vis other sources of the forecast uncertainty. 

2.5 Types of forecasts 

Let co denote the state being forecasted, an element of s. A categorical forecast specifies 
a point estimate x of co. Ex post, one may analyze the forecast error ~ = x-co. Ex ante, the 
forecast uncertainty is quantified completely in terms of a posterior distribution H(colx) 
of the state co, conditional on the estimate x. This distribution is obtained through post- 
processing of forecasts. The conditional mean E(colx) usually varies with x, but the con- 
ditional variance Var(colx) is usually independent of x. In other words, the degree of 
uncertainty that remains about the state co does not depend upon present observations that 
generate the forecast; rather the degree of uncertainty remains the same from year to year. 

A probabilistic forecast specifies a distribution P(CO) of the state co. The forecast 
itself quantifies the degree of uncertainty that remains about co, conditional upon all 
available observations. This degree of uncertainty is likely to vary from year to year, and 
so is the variance of co under distribution P. Let H(colP) denote the posterior distribution 
of co, conditional on forecast P. The forecast is said to be perfectly calibrated if 
H(COlP) = P (co), that is the forecast itself is the posterior distribution. 

To encompass both types of forecasts, we shall let ~ denote either x or P, and H(coI~) 
denote the posterior distribution of co, conditional on ~. 

2.6 Forecast lead time 

The forecast time is the instant up to which the hydrometeorologic variables for prepar- 
ing the forecast have been observed. The forecast period coincides with the time period 
over which the state co is defined. The lead time of the forecast, ~, is the time interval 
elapsed from the forecast time to the end of the forecast period (Figure 3). For example, a 
forecast prepared on 1 January of the runoff volume from 1 April through 30 September 
has a lead time of 9 months. 

2.7 Forecast performance and comparison 

For a fixed lead time, the performance of a forecast may be gauged on an interval scale 
bounded by the performance of a naive forecast (specifying the prior distribution of the 
state) and the performance of a perfect forecast (specifying the actual value of the state). 
Performance measures characterize two attributes of forecasts: 

�9 statistical quality, 

�9 economic value. 
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Popular measures of statistical quality are skill scores; they are independent of the use of 
forecasts. On the other hand, the economic value depends upon the decision problem in 
which forecasts are employed and is a function of both the lead time and statistical qual- 
ity of forecasts (Figure 4). 

Suppose two systems produce forecasts x and y of the same state co, with the same 
lead time ~,. A preference order between x and y may be established either in terms of 
their economic values (for a given decision problem) or in terms of their skill scores. The 
two preference orders need not be consistent. 

If  for every rational decision maker (who maximizes his expected utility of outcomes 
under the posterior distribution of co), forecast x has a higher economic value than fore- 
cast y does, then x is said to dominate y (equivalently, x is said to be more informative 
than y). There exists one, and only one form of statistical comparison of forecasts which 
is always consistent with the dominance order, provided such an order exists. This com- 
parison employs a binary relation of sufficiency. Forecast x is said to be sufficient for 

�9 forecast y if, for every fixed value of the state co, forecast y can be generated from fore- 
cast x through an auxiliary randomization. I fx  is sufficient for y, then x dominates y. 

The significance of the sufficiency relation cannot be overemphasized: whenever x is 
found to be sufficient for y, then one knows, without any further analyses, that x has 
higher economic value than y for every rational user of forecasts. Ergo, x should be pre- 
ferred over y from the societal point of view. That is why alternative improvements of 
drought forecasts which serve many users should always be ranked in terms of the suffi- 
ciency relation. 

2.8 Limits of predictability 

It is often, though not always, the case that longer forecast lead times are accompanied by 
higher uncertainty about the actual state co. In such a case, the shortest lead time at which 
every posterior distribution H(COI~) becomes indistinguishable from the prior distribution 
G(co) defines the potential lead time of forecasts, A. For every lead time ~, shorter than A, 
there is an upper bound on the forecast skill or economic value. The envelope of the 
highest achievable skill for all lead times ~. up to A establishes the limit of drought pred- 
ictability. Two kinds of limits may be considered. 

�9 The theoretical limit of predictability is imposed by the status of the hydrometeoro- 
logical sciences. To extend this limit, new knowledge about drought-causing 
processes must be gained and present theories must be expanded. 

�9 The operational limit of predictability, naturally shorter than the theoretical one, 
stems from the level of technology and resources employed by a forecast service. 
Too sparse measurements of the atmosphere, too slow computers, or too little man- 
power are just a few examples of the limiting factors. 

Matching the operational and theoretical limits of predictability may seem an ideal goal. 
But the economic rationality demands a tradeoff: we must decide when to push the opera- 
tional limits of predictability within the confinements of the present theories, and when to 
invest in research that may move the theoretical limits of predictability to a higher level, 
thereby creating a potential for more cost-effective operational improvements. 

2.9 Interface with decision making 

While gaining the capabilities of a clairvoyant is the ideal goal of research on drought 
forecasting, selecting feasible goals is by no means a clear cut task. Should we pursue 
research towards increasing the lead time of forecasts having a specified level of skill, or 
should we research ways of increasing the skill of forecasts for some fixed lead time? 
The climatic and hydrometeorologic considerations may point out promising research 
paths. But to ascribe to them a rational preference order, it is necessary to examine the 
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ultimate purpose of drought forecasts - which is to provide information for decision 
making. The normative needs of decision processes should thus be identified. A few 
exemplary questions: 

�9 How should forecast uncertainty be expressed in order to provide a basis for rational 
decisions? 

�9 What should be the lead time of forecasts for strategic planning and operational 
decisions? 

�9 What is the optimal frequency of updating forecasts for adaptive (sequential) deci- 
sion strategies? 

Naturally, the answers to these and other questions will vary across decision problems. 
Problems most sensitive, economically and otherwise, to the characteristics of drought 
forecasts should guide the research. 

3 Seasonal runoffforeeasts  

3.1 System description 

Each year the Soil Conservation Service (SCS) of the U.S. Department of Agriculture, in 
cooperation with other agencies, prepares a series of five forecasts of runoff volumes dur- 
ing the snowmelt season. The snowmelt process extends over several months, depending 
on the geographic location: from January to May in Arizona, from April to September in 
Montana. Forecasts are issued at the beginning of each month from January through May 
for 533 river gauging stations in 11 western states. The first forecast is thus prepared five 
to nine months before the actual runoff can be observed. The SCS disseminates the fore- 
casts through a computerized system, known as the "Centralized Forecast System," and 
through a monthly bulletin, entitled "Water Supply Outlook for the Western United 
States," which is published jointly with the National Weather Service. In summary: 

�9 forecasted states: runoff volumes at 533 stations, 
�9 forecast period: 1-6 months, 
�9 lead time: 1-9 months. 

3.2 Forecasting methodology 

The forecasts are categorical, objective/subjective. For each station and forecast period, a 
multivariate regression model outputs an estimate of the runoff volume which may next 
be adjusted judgmentally by the hydrologist in charge of a given river basin. The predic- 
tors in the regression models include soil moisture and temperatures antecedent to 
snowpack formation, and precipitation, snow water equivalent, temperatures, and runoff 
observed up to the forecast time. Future precipitation and states affecting the snowmelt 
process, such as temperatures and winds, are not known, of course, and they are the main 
source of uncertainty. The long lead times and skills of these forecasts derive mainly 
from the fact that 50-80% of the mean annual runoff in the West comes from snowmelt. 

3.3 Posterior uncertainty 
The extent to which forecasts reduce the prior uncertainty is illustrated in Figure 5 for the 
Boise River near Twin Springs, Idaho. The prior density of the runoff volume co during 
the April-July period is contrasted with two posterior densities of co, conditional on fore- 
casts x I and x 5 issued on 1 January, with the lead time of 7 months, and 1 May, with the 
lead time of 3 months, respectively. The forecasts happened to indicate the same runoff, 
Xl =x5 = 100. Inasmuch as the forecasts are categorical, the posterior variances remain 
constant from year to year, and only the posterior means vary with x 1 and x 5. 
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Figure 5. Prior and posterior densities of seasonal runoff volume. Station: Boise River near Twin Springs, 
Idaho. Runoff season: April-July. January forecast x~; May forecast xs. Units: percentages of the 25-year 
(1961-1985) mean runoff volume 
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Figure 6. Forecast versus actual seasonal runoff volume. Station: Salt River near Roosevelt, Arizona. 
Period of record: 1979-1988. January forecast xl of the January-May runoff. April forecast x4 of the April- 
May runoff. Units: percentages of the 25-year (1961-1985) mean runoff volume 

3.4 Forecast performance 

3.4.1 Model o f  forecast errors 

Several studies have analyzed the seasonal runoff forecasts with respect to their statistical 
quality (Shafer and Huddleston, 1985; Krzysztofowicz and Watada, 1986; Krzyszto- 
fowicz and Reese, 1991) and economic value (SCS, 1977; Krzysztofowicz, 1986). We 
found that the relationship between the actual runoff t~ n and the forecast x n issued on the 

first of the nth month (n=1,2,3,4,5) could be modeled in terms of a linear equation 
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Table 1. Two seasonal runoff forecasts for the Salt River near Roosevelt, Arizona 

Forecast Xl x4 
Forecast Time 1 January 1 April 
Forecast Period Jan .-May April-May 
Lead Time (Months) 5 2 

Table 2. Parameter estimates for forecasts listed in Table 1 

n an b,, ~,~ S,, SSC,, 
1 0.11 50.66 25.74 80.23 2.92 
4 1.13 -24.23 29.53 70.95 0.37 

Table 3. Lead times of forecasts having about the same quality 

River Forecast Time Lead Time (months) 
Boise 1 January 7 
Yellowstone 1 April 6 
Salt 15 February 3.5 

X n = anO)n+bn+On, (1) 

where a n and b n are fixed parameters, and O n is a random variable, stochastically 

independent of o~ n, and having a normal density with moments E ( 0 n ) = 0  and 

Var(O,) = (Y~. The conditional mean 

E(xn I o~n) = a,  o3,+b, (2) 

then gives the regression line. 
Figure 6 shows exemplary relationships estimated from a 10-year record (1979-1988) 

for the Salt River near Roosevelt, Arizona. The two forecasts being compared are 
described in Table 1, and the parameter estimates are shown in Table 2. They support the 
visual impression from Figure 6 of the distinct statistical qualities of forecasts. On the 
average, forecast x I with a 5-month lead time overestimates low runoffs and substantially 

underestimates high runoffs. On the other hand, forecast x 4 with 2-month lead time 

shows only a small opposite tendency. Still, the errors of individual forecasts may occur 
as large as 50% of the mean runoff volume. 

3.4.2 Standardized sufficiency characteristic 

Under model (1), the statistical quality of forecasts is completely summarized in a Stand- 
ardized Sufficiency Characteristic (SSC), defined as the ratio of the standard deviation 
(Yn of the residual O n to the product of the absolute value of the slope coefficient a n and 

the prior standard deviation S,, of the runoff volume co,,: 

SSC,, = la,, IS,, " (3) 

For the perfect forecast, SSC,, = 0. For the forecast produced by guessing, or a random 

number generator, SSCn = oo. In a comparison of any two forecasts: forecast x,,, is suffi- 

cient for forecast xn if, and only if, 
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SSCm < SSC.. (4) 

The SSC values reported in Table 2 vividly differentiate between the statistical qualities 
of forecasts having different lead times. 

3.4.3 Limits of predictability 
To obtain some indication of the limits of predictability, we have plotted the SSC as a 
function of the forecast time for three stations: 

Yellowstone River at Billings, Montana, 

Boise River near Twin Springs, Idaho, 

Salt River near Roosevelt, Arizona. 

Figure 7 shows these SSC plots, as well as the forecast periods. Several observations can 
be made. 

1. For every station, the forecast quality generally improves as the lead time becomes 
shorter. Most of these improvements take place between the January and March forecast 
times. 

2. Tradeoffs between the quality and lead time of forecasts are distinct for each river. 
Forecasts for the Boise River exhibit the highest quality, even though they do not have 
the shortest lead times. Forecasts for the Yellowstone River have the longest lead times, 
yet their quality is not uniformly the lowest. These facts pinpoint that the limit of runoff 
predictability is, not unexpectedly, a function of the geographic location and climate. 

3. Another way of characterizing the limits of predictability is to fix a level of fore- 
cast quality and compare the longest achievable lead times. Figure 7 indicates that three 
forecasts, listed in Table 3, have about the same quality. These forecasts can be prepared 
with the lead times of 7 and 6 months for the Boise and Yellowstone Rivers, respectively, 
but only 3.5 months for the Salt River. 

3.5 Extending the limits of predictability 
Since by the end of May, almost all snowpack has already accumulated, the quality of the 
May forecasts indicates the limit of runoff predictability by hydrologic models employed 
presently. Figure 7 suggests that there is still room for some improvement. One possible 
research avenue is to better harness the capabilities of conceptual hydrologic and 
hydraulic models, as exemplified by the Extended Streamflow Prediction program of the 
National Weather Service (Day, 1985). 

But to improve the quality of the early forecasts, it will be necessary to couple hydro- 
logic models with long-range meteorologic forecasts of states such as precipitation, tem- 
perature, and winds during the snowmelt season. Likewise, in order to extend the lead 
times of the runoff forecasts, forecasts of meteorologic states such as snowfall during the 
winter season would have to be inputted into hydrologic models. 

There are strong economic reasons for extending the limits of runoff predictability. 
Most of the major planning decisions associated with agricultural production and water 
allocation in the West are, or should be, made prior to March, sometimes even as early as 
in November of the previous year (Krzysztofowicz and Reese, 1988). Figure 7 assures us 
that there still remain great challenges en route to improving the first forecasts or to 
preparing them a few months earlier. 

4 Long-range meteorologic forecasts 
4.1 Emerging predictability 
The field of long-range weather forecasting has made a few strides in the last two 
decades (Nicholls, 1980, 1988; Madden, 1983; Hastenrath, 1987; Lehman, 1987). Sys- 
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Figure 7. Performance of seasonal runoff forecasts for three gauging stations 

Figure 8. Economic gain from a probabilistic forecast of daily temperature (relative to the economic value 
of a categorical forecast), as a function of the standard deviation of the categorical forecast error, for a 
single-period quadratic decision problem 

tems have been developed that produce long-range forecasts of various meteorologic 
states with some positive measure of skill. Some of these systems have been tested on 
historical records as well as used operationally, and verification data have been accumu- 
lating. All these developments suggest that it may be worthwhile to initiate research 
toward coupling the long-range weather forecasts with hydrologic runoff models. The 
goal of such research would be to increase the lead time of hydrologic drought forecasts. 
Before examining the methodological issues involved in modeling of this interface, let us 
briefly review one particular system for seasonal weather forecasting. 

4.2 Seasonal forecasts of cyclone frequencies 

The UVA Climate Forecast System was developed by Hayden and his associates (Hay- 
den and Smith, 1982; Hayden, 1984). It consists of multivariate statistical models that 
forecast cyclone frequencies during the next 6 months, based on the cyclone frequencies 
observed during the 6 months preceding the forecast time. Thus, when the forecasts are 
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prepared every month, there are 12 forecast periods in a year. A forecast specifies the 
expected frequency of cyclones in each of 87 cells of a rectangular grid, 2.5 ~ latitude by 
5.0 ~ longitude, covering the eastern United States and western Atlantic. The field of the 
expected cyclone frequencies enables the forecaster to trace the expected most frequent 
storm tracks during the forecast period. 

The skill of these forecasts derives from the season-to-season persistence discovered 
in stochastic fields of cyclone frequencies (Hayden and Smith, 1982). The system was 
verified by making hindsight forecasts for the years 1960-1980 (not used in the estima- 
tion of model parameters), and by making operational forecasts for the years 1981-83. 
Hayden (1984) reports several measures of skill, one of them being the hit rate: the pro- 
portion of grid cells in which the forecasted and actual cyclone frequencies are both 
either below the prior (climatological) mean for a given forecast period, or above the 
mean. The average (over the years) hit rate varied slightly among the 12 forecast periods. 
The overall average hit rate was about 75%. By comparison, the simple persistence fore- 
cast scored only 69%. 

4.3 Seasonal forecasts of temperature and precipitation 

The seasonal forecast of the cyclone frequencies is used next to produce forecasts of the 
mean seasonal temperature and precipitation at designated ground stations. Such fore- 
casts have been prepared operationally for the state of Virginia since 1981 in the Office 
of the State Climatologist headed by Dr. Patrick J. Michaels. The operational forecasts 
are prepared for several stations at the beginning of each quarter, for two consecutive 
forecast periods, each 3-months long. The model outputs a continuous point estimate of 
the forecasted state which may next be adjusted judgmentally by a forecaster to account 
for local geographical effects. The final forecasts are thus categorical, 
objective/subjective, and have lead times of 3 and 6 months. They are disseminated 
through a quarterly publication "Virginia Climate Advisory." 

The cumulative verification analysis of over 370 forecasts issued through June 1989 
indicated the average expected hit rate of about 60% for both temperature and precipita- 
tion. A hit is recorded for a station whenever the forecasted and actual values are both 
either below the prior (climatological) mean for a given forecast period, or above the 
mean. 

4.4 Discussion 

4.4.1 On the value of long-range forecasts 

If we take the forecasts produced by the UVA Climate Forecast System as illustrative of 
the present limits of seasonal weather predictability, then the question often posed is 
whether such forecasts have the skill high enough to merit their use as inputs into hydro- 
logic models and management decisions. The question cannot be answered based on skill 
scores alone. What is necessary first, is a complete quantification of uncertainties about 
the forecasted states in terms of prior and posterior distributions, such as those shown 
earlier in Figure 5. Next, the original question should be rephrased: By how much does 
the seasonal weather forecast reduce the prior uncertainty? The answer may be sought 
either in terms of statistical measures of informativeness or, preferably, in terms of 
economic benefits accrued from the resultant drought management decisions - rational 
decisions that optimally account for the posterior uncertainty. 

There is a dearth of scientific studies on the subject. One of the few, by Brown et al. 
(1986), investigated the economic value of the 30-day and 90-day precipitation outlooks 
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disseminated monthly and bimonthly, respectiveIy, by the National Weather Service. The 
decision problem concerned crop production planning by farmers in the northern Great 
Plains in the states of Montana and North Dakota. The study concluded that for this par- 
ticular problem, current forecasts are of minimal value, but a relatively modest increase 
in forecast quality would have large economic benefits. Since forecast value is problem- 
dependent, many more studies are needed to allow us any generalizations. 

4.4.2 On modeling of uncertainties 

There is a general theoretical result (Krzysztofowicz, 1983) to the effect that the less 
skillful a categorical forecast, the more valuable a probabilistic forecast (which explicitly 
quantifies the uncertainty). Figure 8 shows an example of such a relationship. Inasmuch 
as the long-range weather forecasts have generally low skill, proper extraction of infor- 
mation is particularly important. A Bayesian decision procedure is recommended for 
drought management decisions because it is the only procedure that automatically guards 
against realizing a negative value of information from notoriously poor forecasts. We 
should, therefore, research ways of modefing uncertainties associated with long-range 
forecasts within a Bayesian framework of information-processing. 

4.4.3 On the hydro-meteorologic coupling 

If the state of interest is runoff, then it becomes necessary to couple a meteorologic fore- 
cast system with a hydrologic forecast system and to model the propagation of uncertain- 
ties. The posterior distributions of runoff with and without a long-range weather forecast 
would then provide a basis for determining the value of the coupling. 

My final thought is a conjecture on the possible forms of couplings. It appears that 
Professor Hayden's forecast system lends itself to two alternative coupling schemes. The 
first scheme could follow the phenomenological chain: 

forecast of cycllone frequencies 

V 
forecast of precipitation 

f ~ f  orecast o runoff 

The second scheme could be direct: 

forecast of cyclone frequencies 

forecast~of runoff 

The conjecture is that, with both coupling schemes being of equal complexity, the second 
scheme will produce runoff forecast x that is sufficient for runoff forecast y produced by 
the first scheme. The support comes from statistical theory of sufficiency: if we begin 
with a multivariate distribution over the field of cyclone frequencies, then en route to 
deriving a distribution of the runoff, scheme one involves an auxiliary stochastic transfor- 
mation since the precipitation forecast is unlikely to constitute a sufficient statistic of the 
cyclone frequency field. If x is sufficient for y, then the economic payoff from the second 
scheme will exceed that from the first scheme. 

The conjecture offers, therefore, a rationale for invigorating research on stochastic 
hydrometeorology of droughts. In a broad sense, the aim would be to search for direct 
stochastic transformations between states of atmospheric circulation and states of a 
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hydrologic regime - transformations that minimize the propagation of uncertainty and 
thereby attain the theoretical l imit of  drought predictability. 
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